skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu_刘, Junhao_峻豪"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We have comprehensively studied the multiscale physical properties of the massive infrared dark cloud G28.34 (the Dragon cloud) with dust polarization and molecular line data from Planck, FCRAO-14 m, James Clerk Maxwell Telescope, and Atacama Large Millimeter/submillimeter Array. We find that the averaged magnetic fields of clumps tend to be either parallel with or perpendicular to the cloud-scale magnetic fields, while the cores in clump MM4 tend to have magnetic fields aligned with the clump fields. Implementing the relative orientation analysis (for magnetic fields, column density gradients, and local gravity), velocity gradient technique, and modified Davis–Chandrasekhar–Fermi analysis, we find that G28.34 is located in a trans-to-sub-Alfvénic environment; the magnetic field is effectively resisting gravitational collapse in large-scale diffuse gas, but is distorted by gravity within the cloud and affected by star formation activities in high-density regions, and the normalized mass-to-flux ratio tends to increase with increasing density and decreasing radius. Considering the thermal, magnetic, and turbulent supports, we find that the environmental gas of G28.34 is in a supervirial (supported) state, the infrared dark clumps may be in a near-equilibrium state, and core MM4-core4 is in a subvirial (gravity-dominant) state. In summary, we suggest that magnetic fields dominate gravity and turbulence in the cloud environment at large scales, resulting in relatively slow cloud formation and evolution processes. Within the cloud, gravity could overwhelm both magnetic fields and turbulence, allowing local dynamical star formation to happen. 
    more » « less
  2. Abstract Magnetic fields of molecular clouds in the central molecular zone (CMZ) have been relatively under-observed at sub-parsec resolution. Here, we report JCMT/POL2 observations of polarized dust emission in the CMZ, which reveal magnetic field structures in dense gas at ∼0.5 pc resolution. The 11 molecular clouds in our sample include two in the western part of the CMZ (Sgr C and a farside cloud candidate), four around the Galactic longitude 0 (the 50 km s−1cloud, CO 0.02−0.02, theStone, and theSticksandStrawamong the Three Little Pigs), and five along the Dust Ridge (G0.253+0.016, clouds b, c, d, and e/f), for each of which we estimate the magnetic field strength using the angular dispersion function method. The morphologies of magnetic fields in the clouds suggest potential imprints of feedback from expanding Hiiregions and young massive star clusters. A moderate correlation between the total viral parameter versus the star formation rate (SFR) and the dense gas fraction of the clouds is found. A weak correlation between the mass-to-flux ratio and the SFR, and a weak anticorrelation between the magnetic field and the dense gas fraction are also found. Comparisons between magnetic fields and other dynamic components in clouds suggest a more dominant role of self-gravity and turbulence in determining the dynamical states of the clouds and affecting star formation at the studied scales. 
    more » « less